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Abstract

Background: SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease,
from mild or no symptoms to hospitalization and death. COVID-19 disease severity
has been associated with some pre-existing conditions and the magnitude of the
adaptive immune response to SARS-CoV-2, and a recent genome-wide association
study (GWAS) of the risk of critical illness revealed a significant genetic component.
To gain insight into how human genetic variation attenuates or exacerbates disease
following SARS-CoV-2 infection, we implicated putatively functional COVID risk
variants in the cis-regulatory landscapes of human immune cell types with
established roles in disease severity and used high-resolution chromatin
conformation capture to map these disease-associated elements to their effector
genes.

Results: This functional genomic approach implicates 16 genes involved in viral
replication, the interferon response, and inflammation. Several of these genes
(PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in
immune cells from patients with severe versus moderate COVID-19 disease, and we
demonstrate a previously unappreciated role for GART in T cell-dependent antibody-
producing B cell differentiation in a human tonsillar organoid model.

Conclusions: This study offers immunogenetic insight into the basis of COVID-19
disease severity and implicates new targets for therapeutics that limit SARS-CoV-2
infection and its resultant life-threatening inflammation.

Background
SARS-CoV-2 induces a strong immune response dominated by CD4+ and CD8+ T

cells reactive to spike antigen-derived epitopes [1, 2] and accompanied by elevated

lymphokines and reduced frequencies of T and B cells in the blood. Pan-lymphopenia

and higher cytokine levels are associated with severe disease [3–9], and milder disease
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is associated with higher frequencies of circulating SARS-CoV-2-specific CD4+ and

CD8+ T cells [2, 10–13]. The lungs of COVID-19 patients are also enriched for T cells,

and SARS-CoV-2-infected monocyte-derived alveolar macrophages and neutrophils

producing T cell chemokines are more abundant in patients with severe disease [10,

14]. During anti-viral immune responses, CD4+ T follicular helper cells (TFH) migrate

into germinal centers (GC) to help GC B cells differentiate into high affinity antibody-

producing plasmablasts [15]. Circulating SARS-CoV-2-specific TFH, plasmablasts, and

high-affinity Ab are detected in COVID-19 patients, and the frequency of activated

TFH and plasmablasts in the blood is associated with neutralizing IgG levels [11, 16–

20]. SARS-CoV-2 infection in macaques induces a similar cellular dynamic in the

spleen [21, 22], and the frequency of circulating plasmablasts, naive CD4+ T cells, and

TFH in humans is associated with disease severity [6, 11, 17–19, 23]. The immune dy-

namics of SARS-CoV-2 infection suggests that genetically encoded factors regulating

the differentiation and function of CD4+ T cells, TFH, and germinal center B cells

(GCB) likely influence the severity of COVID-19 disease. Recent genome-wide associ-

ation studies (GWAS) for critically ill COVID-19 patients have revealed a number of

loci associated with the trait [24, 25]. However, GWAS does not identify causal effector

genes at non-coding signals, and these loci are often presumptively named after the

nearest gene. To implicate putative causal variants and their corresponding effector

genes at COVID-19 GWAS loci, we leveraged a 3D genomic variant-to-gene mapping

approach using disease-relevant, human immune cell types.

Results
As an initial step, we used ATAC-seq to identify accessible SNPs in linkage disequilib-

rium (LD) with GWAS sentinel signals and high-resolution promoter-focused Capture-

C (PCC) to connect them to the genes they likely regulate. Because of their connection

to COVID-19 disease severity, we chose to perform these analyses in primary naive B

cells, naïve CD4+ T cells, follicular helper T cells [26], and germinal center B cells from

human tonsil, and circulating monocytes (Additional file 1 Fig S1A, Table S1). We in-

cluded hESC as a non-immune comparator [27]. The number (range: 55k–91k open re-

gions) and genomic distribution (mean range: 496–655 bp) of open chromatin regions

(OCR) were comparable among cell types (Additional file 1 Fig S1B-E). To put these

OCR in the context of the 3-dimensional structure of the genome, we performed high-

resolution PCC targeting the majority of coding and non-coding genes in the human

genome [26, 28–31]. The quantity and quality of promoter interactions were similar

among immune cell types (Additional file 1 Fig S2, Table S2). One-third to one-half of

the open chromatin landscapes were connected to gene promoters (Fig. 1A), and genes

whose promoters interact with distal open chromatin regions were expressed ~ 10-fold

higher than genes not physically associated with open chromatin (Fig. 1B). These re-

sults indicate that promoter-connected OCR represent cis-regulatory elements engaged

in active control of gene expression. The promoter-connected open chromatin land-

scape of naive CD4+ T cells was significantly enriched for COVID-19 disease risk herit-

ability (~ 28-fold, FDR = 0.045, Fig. 1C). TFH and monocyte gene regulatory

architectures showed a similar magnitude but more variable enrichment for COVID-19

disease risk variants, and B cells and ESC landscapes did not show enrichment (Fig.

1C). These results are consistent with the growing evidence that dynamics relevant to
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Fig. 1 (See legend on next page.)

Pahl et al. Genome Biology          (2022) 23:125 Page 3 of 19



multiple immune cell types may contribute to disease severity and suggest that

COVID-19-associated variants in CD4+ T cell and monocyte open chromatin may have

the strongest influence on disease severity.

To map potentially functional COVID-19 variants to their target genes, we inter-

sected our ATAC-seq and PCC data with the most recent COVID-19 disease risk

GWAS [25] (Fig. 2A and B, Table S3). We examined proxy SNPs in high LD (R2 > 0.8)

with the six independent genome-wide significant signals associated with COVID19 se-

verity and identified 16 genes whose promoters physically interact with accessible

COVID-19-associated variants in immune cells (Fig. 2B, C, Additional file 1 Fig S3).

We identified accessible proxy SNPs in LD with the COVID-19 sentinel rs10774671 in

the promoter of OAS3, and accessible proxies interacting with OAS1 and OAS2 in all

immune cell types analyzed (Fig. 2C). The DPP9 sentinel rs2109069 is in LD with ac-

cessible proxies in the DPP9 promoter in each immune cell type, but also to distal ac-

cessible proxies interacting with FEM1A in the T and B cells, and to distal proxies

interacting with TNFAIP8L1 specifically in naive CD4+ T cells (Fig. 2C). The sentinel

rs13050728 is in LD with accessible proxies interacting with PAXBP1, C21orf49, and

AP000295.9 in naive CD4+ T cells; IFNAR1 in TFH and naïve B cells; DNAJC28 in

naive T and B cells; GART, IL10RB, and SON in TFH cells; and IFNAR2 in all cell types

(Fig. 2C). A proxy SNP in LD with the sentinel rs77534576 is connected to the DLX3

gene in naive CD4+ T cells (Fig. 2C).

Gene ontology analyses of the set of COVID-19 variant-connected genes showed en-

richment for pathways involved in coronavirus pathogenesis (-logP = 8.97), viral hyper-

cytokinemia (-logP = 8.95), viral/bacterial pattern recognition (-logP = 4.0), interferon

signaling (-logP = 5.93), and T cell exhaustion (-logP = 2.39). This set of genes was also

enriched (P < 0.0003) for factors involved in viral infection, RNA virus replication, anti-

viral response, multiple sclerosis, psoriasis, and necrosis (Additional file 1 Fig S4, Table

S4). We note that our approach did not implicate genes for two COVID-19-associated

GWAS signals (rs10490770 & rs74956615). rs10490770 is the strongest signal located

on chromosome 3, and its proxy SNP rs17713054 has been reported to contact the

LZTFL1 promoter in lung epithelial cells, suggesting that these risk loci act outside the

immune cells [32].

To explore the functional significance of genes implicated through their connection

to COVID-19-associated immune regulatory architectures, we compared their expres-

sion in bulk blood leukocytes [33] or at the single-cell level [34] from COVID-19 pa-

tients vs. healthy donors from published datasets. We found nearly two-thirds (10/16)

(See figure on previous page.)
Fig. 1 Promoter-connected open chromatin is enriched for highly expressed genes and COVID-19 disease
risk heritability. A The number of OCRs contacting promoters determined by Capture C and those without
promoter contacts. B Expression measured by transcripts per kilobase million (TPM) of genes with at least
one OCR-promoter contact (red) vs. genes without promoter-OCR contacts (blue). Boxplots represent the
median expression for each category. Statistical significance was determined using two-sided Wilcoxon
rank-sum tests. TPM range contacted 0–25,499.71, non-contacted 177,277.33. Medians: hESC contacting =
8.86, non-contacting 0.0621, monocyte contacting = 11.627, non-contacting 0.0123, naïve B contacting =
14.0, non-contacting 0.0289, GCB contacting = 14.0, non-contacting 0.0289, naïve CD4 T contacting = 12.8,
non-contacting 0.0244 TFH contacting = 14.3, non-contacting = 0.216. C Enrichment of estimated COVID-19
GWAS heritability determined by partitioned score regression for the open chromatin landscape for each
cell type. Points indicate calculated enrichment and whiskers indicate 95% confidence interval. The
associated FDR for each enrichment is depicted on the right
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of these implicated genes were differentially expressed in circulating leukocytes of

SARS-CoV-2-infected humans (Fig. 3A, B). OAS1, OAS2, OAS3, IL10RB, FEM1A,

GART, SON, and IFNAR2 were significantly (FDR < 0.05) upregulated in lymphocytes

and monocytes from COVID-19 patients compared to healthy controls, while TNFA

IP8L1 was significantly downregulated in monocytes from COVID-19 patients (Fig. 3A,

B). Importantly, six of these genes also exhibited severity-associated patterns of expres-

sion. IFNAR2 was significantly upregulated in severe COVID-19 patients (FDR =

0.0075, Fig. 3A), and both OAS1 and OAS3 were upregulated in T cells from severe

COVID-19 patients compared to those with mild disease (Fig. 3B). PAXBP1 was

Fig. 2 Chromosome capture-based variant-to-gene mapping identifies candidate effector genes at COVID-
19 GWAS loci. A Manhattan plot generated using the summary statistics from the COVID-19 severity GWAS.
Genome-wide significant signals are shown together with the number of accessible gene-annotated
proxies associated. B Depiction of the statistical sentinel-proxy SNP linkages and the PCC-derived physical
gene-proxy connections identified in this study. Genes in yellow were implicated by an accessible proxy in
the promoter regions, genes in blue were implicated through chromatin-based contact between the
promoter region and a distal accessible proxy, and green indicates implication by both promoter and distal
proxies. C Heatmap depicting genes implicated by variant-to-gene mapping in each cell type in red. Color
of each gene corresponds to the signal shown in A
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significantly downregulated (FDR = 0.0067) in severe vs. mild COVID patients, and

GART and TNFAIP8L1 were nominally downregulated in severe patients (p = 0.047,

FDR = 0.127).

The putatively causal variants identified in this study likely influence COVID-19 risk

by directly contacting and altering the expression of their target genes in immune cell

types. To test whether these COVID-19 variants may influence gene transcription by

affecting the binding of transcription factors, we used a modeling approach to predict

their impact on the affinity of transcription factors for consensus DNA motifs present

in the regulatory landscape of COVID-19-relevant immune cell types. This approach

identified 9 COVID-19-associated SNPs predicted to impact binding of 22 expressed

transcription factors to 14 of the 16 genes identified in this study (Fig. 4 and Table S5).

COVID-19 risk-associated sequence variation at IFNAR2 may increase binding of

ZNF410, a zinc finger protein involved in repression of fetal hemoglobin in erythroid

cells [35], and risk variants also increase the predicted affinity of STAT3 for elements

connected to IFNAR1, IFNAR2, PAXBP1, GART, C21ORF49, SON, and IL10RB.

Fig. 3 Immune genes implicated through contact with COVID-19 variants are differentially expressed in
patients with SARS-CoV-2 infection and severe COVID-19 disease. Differential gene expression in mild/
moderate and severe COVID-19 patients relative to healthy donors quantified by A bulk RNA-seq of whole
blood leukocytes at various timepoints from Galani et al. [33] and B single-cell RNA-seq from peripheral
blood from Zhang et al. [34] Values represent log2FC of TPM for each gene relative to the mean of healthy
donors, and genes showing disease severity-associated expression are shown in red. Data in B represent
pseudo-bulk RNA-seq of T cells, B cells, or monocytes clustered by single-cell transcript patterns. Genes
indicated in red in A and B exhibited severity-associated expression patterns
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Variants connected to OAS1, OAS2, and OAS3 may affect the binding of 15 distinct

transcription factors, including the RFX family of transcription factors involved in ex-

pression of MHC class II genes, and the plasmablast and TFH factors MIST1

(BHLHA15) [36] and ASCL2 [37]. This set of affected transcription factors form a net-

work of highly co-regulated activities downstream of the TCR, particularly centered

around STAT3 and EGR1 (Additional file 1 Fig S5), and enriched for roles in

hematopoietic, B and T cell development, differentiation, and function (Table S6).

Discussion
Together, our results suggest that genes central to viral genome sensing, host control

of viral replication, the interferon response, and immune inflammation are likely under

genetic control by common variants associated with COVID-19 disease risk. This study

implicated multiple genes at all but one locus. While methods for fine-mapping GWAS

signals generally assume a single causal variant acting at one effector gene, this assump-

tion is not always valid. We observe clear evidence for pleiotropic effects of COVID-19

disease risk-associated genetic variation at the level of multiple proxies in open chro-

matin at each locus in the same and/or distinct cell types, and individual accessible

proxies contacting multiple genes in one or across more cell types (Supplemental Fig-

ure 3). Similar pleiotropy was observed for FTO obesity variants on the dynamics and

lineage-specific expression of distal genes such as IRX3 and IRX5 [38].

Fig. 4 In silico prediction of transcription factor binding site disruption by accessible COVID-19 associated
proxies. A Transcription factors (blue) with binding motifs likely to be disrupted by accessible COVID-19
SNPs and their connected target genes (green). The predicted effect of the SNP on TF binding is indicated
in red for decreased affinity and in blue for increased affinity. COVID-19 risk-associated sequence variation at
an element connected to IFNAR2 is predicted to increase binding of ZNF410, a zinc finger protein involved
in repression of fetal hemoglobin in erythroid cells. Risk variants also increased the predicted affinity of
STAT3 for elements at six implicated genes including PAXBP1. Risk variants at PAXBP1 and five other
implicated genes were also predicted to reduce binding of the MYC-induced AP4 (TFAP4) oncoprotein and
E2A (TCF3), a central transcription factor in lymphocyte development and malignancy. COVID-19 disease
variants connected to OAS1 and OAS3 were predicted to affect the binding of 15 distinct transcription
factors, including the E proteins TCF3, TCF4, TCF12, and NEUROD2, the RFX family of transcription factors
involved in expression of a variety of immune factors including the MHC class II genes, and the plasmablast
and TFH factors MIST1 (BHLHA15) and ASCL2. B An example of the predicted impact of the COVID-19 risk
allele of rs12482556 (red) on binding of TCF3 and TFAP4
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The genes identified through physical association with accessible COVID-19 variants

have known roles in viral replication, the interferon response, and inflammation. The

genes GART and SON encode factors that may directly impact SARS-CoV-2 replication

(Fig. 5A). SON encodes a factor that regulates HBV influenza A replication [39, 40], while

GART controls de novo purine pools required for coronavirus RNA replication that may

also drive evolution of viral variants over the course of the pandemic [41, 42]. Interferons

(IFN) are important for the control of early virus replication and in determining moderate

vs. severe inflammatory disease [43]. SARS-CoV2 induces type I and type III interferons

[44] that signal through IFNAR1, IFNAR2, and IL10RB (Fig. 5A), but SARS-CoV2 also en-

codes factors that can inhibit type I and III responses [45–47]. Thus, many SARS-CoV-2-

infected individuals exhibit blunted and/or delayed interferon responses [20, 48–50] and

experience more severe disease than COVID-19 patients with strong interferon responses

[32, 50, 51]. SARS-CoV-2 dsRNA genomes are sensed by the RIG-I/MDA5 and RNAseL

pathways [52, 53]. OAS1, OAS2, and OAS3 encode crucial regulators of dsRNA degrad-

ation by RNAseL, and DPP9 regulates the activity of NLRP1, a dsRNA-sensing compo-

nent of the inflammasome [54] (Fig. 5A). Gain of function mutations in OAS1 lead to

autoinflammatory disease in humans [55]; polymorphisms at the OAS1 locus are associ-

ated with type 2 diabetes [56], a pre-existing condition associated with severe COVID-19

disease [57]; and genetic variation at DPP9 is associated with the risk of developing pul-

monary fibrosis [58]. Cytokine release syndrome is a major inflammatory complication in

patients with severe COVID-19 disease [59–61]. Receptors for type I (IFNAR1 and 2) and

III (IL10RB) interferons drive inflammation mediated by NK and CD8+ T cells, and IL-

10RB binds IL-10 whose levels are a severity predictor in COVID-19 [62] (Fig. 5B).

FEM1A encodes a negative regulator of NFkB activation [63], and TNFAIP8L1 regulates

expression of the chemokine MCP-1 [64]. DNAJC28 is a mitochondrial Hsp40 family

member and cofactor of Hsp70 heat shock proteins [65]. PAXBP1 encodes a regulator of

ROS and p53 [66], and DLX3 encodes a homeobox protein known to function down-

stream of the TGFB, BMP, and WNT pathways in tooth and placental development [67],

but immune roles for these factors have not been established.

GART encodes an enzyme involved in purine biosynthesis, and its folate-derived me-

tabolites have roles in DNA methylation and mitochondrial redox, processes that regu-

late immune cell function [68] (Fig. 5B). To test for a role for GART in adaptive

immune responses associated with susceptibility to severe COVID-19, we used the

GART inhibitory drug lometrexol in an in vitro human tonsillar organoid model of T

cell-dependent germinal center B cell differentiation [32]. After 7 days in culture, T-B

interactions in control organoids supported the differentiation of CD27 + CD38+ GCB

cell plasmablasts (Fig. 6A and B) capable of producing high-affinity class-switched anti-

bodies in this mod [32]. The GART inhibitor lometrexol abrogated plasmablast differ-

entiation in a dose-dependent manner (Fig. 6A and B) without affecting B or T cell

survival or TFH frequency (Fig. 6C). These results indicate that GART has a previously

unappreciated role in T cell-B cell germinal center reactions, and further link GART to

immune processes associated with COVID-19 disease severity.

Conclusions
This work implicates genetic variation in the cis-regulatory architecture of immune

cells as a potential source of the observed variation in COVID-19 disease severity. The
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Fig. 5 Potential mechanisms by which V2G-implicated genes impact COVID-19 disease severity. A SON
may control release and processing of SARS-CoV-2 RNA genomes (1), and GART is involved in de
novo generation of the purine precursors required for SARS-CoV-2 RNA replication (2). Sensing of
dsRNA regulated by OAS1, OAS2, OAS3, and DPP9 may lead to degradation of SARS-CoV-2 genomes
and activation of the inflammasome (3, 4). SARS-CoV-2-induced activation of NFkB, IRFs, and Jun,
dampened by SARS-CoV-2-encoded factors (4 - M, nsp1, N, PLPro, ORF3b), induces IFNB. Anti-viral
signaling is mediated by type I interferon receptors encoded by IFNAR1 and IFNAR2 (5), and the type
III interferon receptor encoded by IL10RB (6). These processes are known to be inhibited by the
SARS-CoV-2-encoded factors nsp1 and ORF6 (7). B Sensing of SARS-CoV-2 RNA genomes released
upon infection of lung epithelial cells or alveolar macrophages increases expression of components of
the antigen processing and presentation machinery, interferons, cytokines, and chemokines (1–3).
These processes are regulated by TNFAIP8L1, FEM1A, and DPP9. Type I interferon receptors IFNAR1
and IFNAR2 control T and NK cell function, and IL10RB affects responsiveness to type III interferons
and other cytokines (4). The enzymatic activity of GART regulates metabolic and epigenetic processes
important for lymphocyte activation, proliferation, and differentiation (5, 6)
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initial GWAS implicated candidate effector genes using metrics of linear proximity to

the GWAS signal and public expression quantitative trait loci (eQTLs) datasets [25].

Several of our V2G attributions agreed with these analyses, including OAS1, OAS2, and

OAS3 as the likely effector genes for rs10774671. DLX3, IL10RB, and IFNAR2 were also

implicated in the prior study via intersection with eQTLs from various tissues and cell

types. However, a number of GWAS candidate genes were not implicated in our study,

and our immune-focused PCC maps identified several candidate effectors not impli-

cated previously: IFNAR1, GART, SON, and AP00295.9 for rs1305728 and TNFAIP8L1

and FEM1A for rs77534576. In addition, our V2G mapping of genes involved in

COVID severity identified GART as a novel target whose activity could potentially be

promoted for better anti-viral humoral immune responses or inhibited as a potential

treatment for systemic autoimmune disease. Further work is necessary to determine

the roles of these genes in COVID-19, and whether genes implicated here may repre-

sent therapeutic targets for COVID-19 and other inflammatory disorders.

Methods
Antibodies

Anti-human CD19-APC-Cy7 (HIB19, cat#302218), CD27 PerCP-Cy5.5 (O323,

cat#302820), and IgD-Pacific-Blue (IA6-2, cat#348225) were from Biolegend. Anti-

human CD38-APC (HIT2, cat#555462) and CD21 Pe B-ly4 (557327) were from BD

Biosciences.

Purification of B cells from human tonsil

Fresh tonsils were obtained as discarded surgical waste from de-identified immune-

competent children undergoing tonsillectomy to address airway obstruction or a history

of recurrent tonsillitis. These studies were approved by The Children’s Hospital of

Philadelphia Institutional Review Board as non-human subject research. The mean age

Fig. 6 GART inhibition abrogates germinal center plasmablast output in tonsillar organoids. A Day 7
plasmablast frequencies from untreated or lometrexol-treated tonsillar organoids from a representative
tonsil donor. B Plasmablast frequency diminishment in day 7 lometrexol drugged organoids relative to
untreated counterparts from three tonsil donors. *P ≤ 0.05. C B and T cell viability and TFH frequency from
these same experiments. Data from each donor are depicted separately

Pahl et al. Genome Biology          (2022) 23:125 Page 10 of 19



of donors was 5.6 years (range 3-16 years) and 75% were male. Tonsillar mononuclear

cells were isolated from tissues by mechanical disruption (tonsils were minced and

pressed through a 70-micron cell screen) followed by Ficoll-Paque centrifugation. Naïve

B cells (CD19+CD21+IgD+CD38−) and GC B cells (CD19+CD21+CD38+IgD−CD27−)

were then sorted using a MoFlo Astrios EQ (Beckman Coulter). The gating strategy is

shown in Additional file 1 Fig S6.

Tonsillar organoid preparation and staining

Excised tonsils from three de-identified immunocompetent patients were diced and

strained through a 100-μm filter. A single cell suspension of tonsillar mononuclear cells

(MNCs) was created with Ficoll density gradient separation. Once isolated, MNC were

counted and resuspended in organoid media (RPMI with L-glutamine, 10% FBS, 2 mM

glutamine, 1X penicillin-streptomycin, 1 mM sodium pyruvate, 1X MEM non-essential

amino acids, 10 mM HEPES buffer and 1 μg/ml of recombinant human B cell activating

factor [BioLegend]) at a concentration of 6 × 107 cells per ml. As previously described

by Wagar et al. [32], MNC’s were transferred to permeable transwells (0.4-μm pore,

12-mm diameter; Millipore). Transwells were inserted into standard 12-well polystyr-

ene plates containing 1 ml of additional organoid media and placed in an incubator at

37 °C and 5% CO2. Lometrexol in phosphate-buffered saline was added, or not, to orga-

noids after 48 h in culture. Organoid media with or without lometrexol was replaced

every 3 days. On culture day 7, organoid MNCs were resuspended and stained at 4 °C

with the anti-human CD38 (HIT2; BioLegend), CD27 (O323; BioLegend), CD19

(HIB19; BioLegend), and L/D aqua (Invitrogen). Cells were analyzed with LSRFortessa

(BD Bioscience) and visualized with FlowJo software (TreeStar).

Cell fixation

We used standard methods for cell fixation [26, 28–31]. Briefly, 107 naïve or germinal

center B cells were suspended in 10mL RPMI + 10% FBS, followed by an additional

270μL of 37% formaldehyde and incubation for 10 min at RT on a platform rocker.

The fixation reaction was quenched by the addition of 1.5 mL cold 1M glycine (4 °C).

Fixed cells were centrifuged at 210×g for 5 min at 4 °C and supernatants were removed.

The cell pellets were washed in 10-ml cold PBS (4 °C) followed by centrifugation as

above. Cell pellets were resuspended in 5-ml cold lysis buffer (10 mM Tris pH 8, 10

mM NaCl, 0.2% NP-40/Igepal supplemented with a protease inhibitor cocktail). Resus-

pended cell pellets were incubated for 20 min on ice, centrifuged at 680×g, and lysis

buffer was removed. Cell pellets were resuspended in 1 mL of fresh lysis buffer, trans-

ferred to 1.5-mL Eppendorf tubes, and snap frozen in ethanol/dry ice or liquid nitro-

gen. Frozen cell pellets were stored at − 80 °C for 3C library generation.

3C library generation

We used standard methods for generation of 3C libraries [26, 28–31]. For each library,

107 fixed cells were thawed at 37 °C, followed by centrifugation at RT for 5min at

1845×g. The cell pellet was resuspended in 1 mL of dH2O supplemented with 5 μL

200X protease inhibitor cocktail, incubated on ice for 10 min, then centrifuged. Cell

pellet was resuspended to a total volume of 650 μL in dH2O. Fifty microliters of cell
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suspension was set aside for pre-digestion QC, and the remaining sample was divided

into 3 tubes. Both pre-digestion controls and samples underwent a pre-digestion incu-

bation in a Thermomixer (BenchMark) with the addition of 0.3%SDS, 1x NEB DpnII

restriction buffer, and dH2O for 1 h at 37 °C shaking at 1000 rpm. A 1.7% solution of

Triton X-100 was added to each tube and shaking was continued for another hour.

After pre-digestion incubation, 10 μL of DpnII (NEB, 50 U/μL) was added to each sam-

ple tube only and continued shaking along with pre-digestion control until the end of

the day. An additional 10 μL of DpnII was added to each digestion reaction and

digested overnight. The next day, a further 10 μL DpnII was added and continue shak-

ing for another 2–3 h. One hundred microliters of each digestion reaction was then re-

moved, pooled into one 1.5-mL tube, and set aside for digestion efficiency QC. The

remaining samples were heat inactivated incubated at 1000 rpm in a MultiTherm for

20 min at 65 °C to inactivate the DpnII and cooled on ice for 20 additional minutes.

Digested samples were ligated with 8 μL of T4 DNA ligase (HC ThermoFisher, 30 U/

μL) and 1X ligase buffer at 1000 rpm overnight at 16 °C in a MultiTherm. The next

day, an additional 2 μL of T4 DNA ligase was spiked into each sample and incubated

for another few hours. The ligated samples were then de-crosslinked overnight at 65 °C

with Proteinase K (20 mg/mL, Denville Scientific) along with pre-digestion and diges-

tion control. The following morning, both controls and ligated samples were incubated

for 30 min at 37 °C with RNase A (Millipore), followed by phenol/chloroform extrac-

tion, ethanol precipitation at − 20 °C, the 3C libraries were centrifuged at 1000×g for

45 min at 4 °C to pellet the samples. The controls were centrifuged at 1845×g. The pel-

lets were resuspended in 70% ethanol and centrifuged as described above. The pellets

of 3C libraries and controls were resuspended in 300 μL and 20 μL dH2O, respectively,

and stored at − 20 °C. Sample concentrations were measured by Qubit. Digestion and

ligation efficiencies were assessed by gel electrophoresis on a 0.9% agarose gel and also

by quantitative PCR (SYBR green, Thermo Fisher).

Promoter-Capture-C design

Our promoter-Capture-C approach was designed to leverage the four-cutter restriction

enzyme DpnII in order to give high resolution restriction fragments of a median of

~250bp [26, 28–31]. This approach also allows for scalable resolution through in silico

fragment concatenation. Custom capture baits were designed using Agilent SureSelect

RNA probes targeting both ends of the DpnII restriction fragments containing pro-

moters for coding mRNA, non-coding RNA, antisense RNA, snRNA, miRNA, snoRNA,

and lincRNA transcripts (UCSC lincRNA transcripts and sno/miRNA under GRCh37/

hg19 assembly) totaling 36,691 RNA baited fragments through the genome. The cap-

ture library was re-annotated under gencodeV19 at both 1-fragment and 4-fragment

resolution.

Promoter-Capture-C assay

Isolated DNA from 3C libraries was quantified using a Qubit fluorometer (Life tech-

nologies), and 10 μg of each library was sheared in dH2O using a QSonica Q800R to an

average fragment size of 350bp [26, 28–31]. QSonica settings used were 60% amplitude,

30s on, 30s off, 2-min intervals, for a total of 5 intervals at 4 °C. After shearing, DNA
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was purified using AMPureXP beads (Agencourt). DNA size was assessed on a Bioana-

lyzer 2100 using a DNA 1000 Chip (Agilent) and DNA concentration was checked via

Qubit. SureSelect XT library prep kits (Agilent) were used to repair DNA ends and for

adaptor ligation following the manufacturer’s protocol. Excess adaptors were removed

using AMPureXP beads. Size and concentration were checked by Bioanalyzer using a

DNA 1000 Chip and by Qubit fluorometer before hybridization. One microgram of

adaptor-ligated library was used as input for the SureSelect XT capture kit using manu-

facturer protocol and our custom-designed 41 K promoter Capture-C library. The

quantity and quality of the captured library was assessed by Bioanalyzer using a high

sensitivity DNA Chip and by Qubit fluorometer. SureSelect XT libraries were then

paired-end sequenced on 8 lanes of Illumina Hiseq 4000 platform (100 bp read length).

ATAC-seq library generation

The tonsillar T cells [26], monocytes [69], and B cell subsets were processed in the

same manner. A total of 50,000 to 100,000 sorted cells were centrifuged at 550 g for 5

min at 4 °C. The cell pellet was washed with cold PBS and resuspended in 50 μL cold

lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP-40/IGEPAL

CA-630) and immediately centrifuged at 550 g for 10 min at 4 °C. Nuclei were resus-

pended in the Nextera transposition reaction mix (25 μL 2x TD Buffer, 2.5 μL Nextera

Tn5 transposase (Illumina Cat #FC-121-1030), and 22.5 μL nuclease free H2O) on ice,

then incubated for 45 min at 37 °C. The tagmented DNA was then purified using the

Qiagen MinElute kit eluted with 10.5 μL Elution Buffer (EB). Ten microliters of purified

tagmented DNA was PCR amplified using Nextera primers for 12 cycles to generate

each library. PCR reaction was subsequently cleaned up using 1.5x AMPureXP beads

(Agencourt), and concentrations were measured by Qubit. Libraries were paired-end

sequenced on the Illumina HiSeq 4000 platform (100 bp read length).

ATAC-seq analysis

ATAC-seq peaks from libraries of tonsillar T cells [26], monocytes [69], and B cell sub-

sets were called using the ENCODE ATAC-seq pipeline (https://www.encodeproject.

org/atac-seq/). Briefly, pair-end reads from three biological replicates for each cell type

were aligned to hg19 genome using bowtie2, and duplicate reads were removed from

the alignment. Narrow peaks were called independently for each replicate using macs2

(-p 0.01 --nomodel --shift -75 --extsize 150 -B --SPMR --keep-dup all --call-summits)

and ENCODE blacklist regions (ENCSR636HFF) were removed from peaks in individ-

ual replicates. The IDR optimal peak set for each cell type was used to define open

chromatin regions in this study.

Promoter-focused Capture-C analysis

Paired-end reads from three biological replicates were pre-processed using the HiCUP

pipeline (v0.5.9) [70], with bowtie2 as aligner and hg19 as the reference genome. Sig-

nificant promoter interactions at 1-DpnII fragment resolution were called using CHi-

CAGO (v1.1.8) [71] with default parameters except for binsize set to 2500. Significant

interactions at 4-DpnII fragment resolution were also called using CHiCAGO with arti-

ficial .baitmap and .rmap files in which DpnII fragments were concatenated in silico
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into 4 consecutive fragments using default parameters except for removeAdjacent set

to False. The significant interactions (CHiCAGO score > 5) from both 1-fragment and

4-fragment resolutions were exported in .ibed format and merged into a single file

using custom a PERL script to remove redundant interactions and to keep the max

CHiCAGO score for each interaction.

COVID-19 GWAS data integration

We curated the lead SNPs from the recent COVID-19 severity GWAS from the

COVID-19 Host Genetics Initiative [25] (Freeze 5). The six genome-wide significant

SNPs associated with critical illness and COVID-19 severity were selected for investiga-

tion in our study. We identified proxies in LD with significant COVID-19 severity loci

using LDLinkR with R2 > 0.8 in EUR ancestry. We next intersected the COVID-19 sen-

tinel and proxy SNPs with the set of OCR annotated to promoter regions (−1500/+

500 bp of TSS) and OCR overlapping promoter interacting regions identified by Cap-

ture C. Genomic coordinate overlaps were identified using the R package Genomi-

cRanges (ver 1.42) against the human genome reference hg19.

Partitioned heritability LD score regression enrichment analysis

Partitioned heritability LD score regression (v1.0.0) was used to identify enrichment of

GWAS summary statistics among open accessible regions identified in each cell type.

The baseline analysis was performed using LDSCORE data (https://data.broadinstitute.

org/alkesgroup/LDSCORE) with LD scores, regression weights, and allele frequencies

from 1000G Phase1 and summary statistics from the COVID-19 Host Genetics Initia-

tive [25]. We generated partitioned LD score regression annotations for each cell type

using the coordinates of the all promoter OCR + promoter-interacting OCR. Finally,

the cell-type-specific partitioned LD scores were compared to baseline LD scores to

measure enrichment in each cell type independently.

Transcription factor motif analysis

Transcription factor binding site motifs overlapping with proxies implicated in by vari-

ant to gene mapping analysis were identified using the R package motifbreakR (v2.0.0)

[72] using the Jaspar2018 database as our reference set of position weight matrices

[73]. Results were filtered to TFs that expressed in the implicated cell type (TPM > 1)

and were visualized using Cytoscape (v3.8.2) [74].

RNA-seq library generation and analysis

RNA was isolated from ~ 1 million of each cell type using Trizol Re- agent (Invitrogen),

purified using the Directzol RNA Miniprep Kit (Zymo Research), and depleted of con-

taminating genomic DNA using DNAse I. Purified RNA was checked for quality on a

Bioanlayzer 2100 using the Nano RNA Chip and samples with RIN > 7 were used for

RNA-seq library preparation. RNA samples were depleted of rRNA using QIAseq Fas-

tselect RNA removal kit (Qiagen). Samples were then processed for the preparation of

libraries using the SMARTer Stranded Total RNA Sample Prep Kit (Takara Bio USA)

according to the manufacturer’s instructions. Briefly, the purified first-strand cDNA is

amplified into RNA-seq libraries using SeqAmp DNA Polymerase and the Forward and
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the Reverse PCR Primers from the Illumina Indexing Primer Set HT for Illumina.

Quality and quantity of the libraries was assessed using the Agilent 2100 Bioanalyzer

system and Qubit fluorometer (Life Technologies). Sequencing of the finalized libraries

was performed on the NovaSeq 6000 platform at the CHOP Center for Spatial and

Functional Genomics. For analysis, TPM values of bulk RNA-seq data were calculated

using the pseudo-aligner Kallisto 0.46.2 [75]. Gene level expression was calculated by

combining individual TPM values. The comparison of gene expression level between

those with promoters with contacts to OCRs or those lacking contacts with OCRs was

performed using an unpaired two-sided Wilcoxon rank-sum test, implemented in the R

function wilcox.test.

COVID-19 V2G gene integration with external RNA-seq datasets

We retrieved bulk RNA-seq fastq datasets associated with Galani et al. [33] from the

Sequence Read Archive using sra-tools (SRA Toolkit Development Team; http://ncbi.

github.io/sra-tools/) and plotted the log2 fold change data reported for severe or mild

COVID-19 compared to the mean of 5 healthy donors. Single-end fastq files were re-

trieved with fastq-dump. TPM values were calculated using kallisto with the following

parameters: --single -l 200 -s 20. The log2FC for the genes implicated in our immune

cell types was calculated for each COVID19 patient compared. We retrieved processed

data for pseudo-bulk comparisons between severe and mild COVID-19 relative to

healthy donors from Zhang et al. [34].

Ingenuity pathway analysis

Ingenuity pathway analysis (IPA, QIAGEN) was used for gene ontology analysis.
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