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Introduction

The deletion of the q11 region of chromosome 22 is the 
most common microdeletion disorder in humans, occur-
ring in approximately 1 in 4000 live births [1]. This deletion 
confers the condition 22q11.2 deletion syndrome (22qDS), 
a highly variable phenotypic presentation encompass-
ing aortic arch anomalies, congenital heart defects, thy-
mic hypoplasia, hypocalcemia, facial deformities, as well 
as neuropsychiatric disorders [2–4]. The deleted region 
includes approximately 40 protein coding genes, including 
T-box protein 1 (TBX1), which has been linked to cardiac 
defects, Catechol-O-methyltransferase (COMT), which 
could be related to neuropsychiatric phenotypes, and 6 
mitochondrial genes [5–7]. Another deleted gene encodes 
for claudin-5 (CLDN5), the tight junction protein that under-
lies the integrity of the blood-brain barrier (BBB). CLDN5 
is localized in the LCRA-B region, close to TBX1 [7, 8], 
and hence is affected in essentially all individuals with the 
22qDS. The BBB relies on an elaborate junctional network 
and unique metabolic properties to restrict interactions with 
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Abstract
We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic 
capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We 
hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility 
conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intrave-
nous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential 
susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from 
a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysac-
charide (LPS) alongside endothelial cells in circulation. We report that the patient’s serum significantly impairs barrier 
function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms 
have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our 
findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 
deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.
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the periphery and maintain the relative immune privilege of 
the central nervous system (CNS) [9, 10]. Recently, we and 
others have identified that the BBB is intrinsically compro-
mised in 22qDS, potentially rendering the brain susceptible 
to additional insults or stressors [11–13]. Compromised 
BBB function has been linked to neurological and neuro-
psychiatric conditions ranging from stroke, multiple sclero-
sis, and schizophrenia [14, 15].

Here, we report a patient with 22qDS diagnosed with 
systemic capillary leak syndrome (SCLS, Clarkson’s dis-
ease) who presented with neurological symptoms. SCLS 
is a rare, life-threatening condition caused by acute epi-
sodes of increased capillary permeability due to unknown 
triggers, although the cases are often preceded by a viral 
infection [16]. This leakage of plasma into the interstitial 
space causes hemoconcentration, hypoalbuminemia and 
edema followed by hypovolemic shock [16]. While several 
hundred cases have been reported in adults, only a handful 
of SCLS cases in children have ever been documented and 
none have been described in patients with the 22qDS [17, 
18]. As brain involvement is a rare presentation of SCLS 
[19], here we explore the clinical and immunological phe-
notypes in a 22qDS patient with severe SCLS, and identify 
the BBB as a potential conduit by which SCLS impacted the 
brain in this patient.

Materials and Methods

Standard Protocol Approvals, Registrations, and 
Patient Consents

The subject and his family provided signed, informed 
assent/consent under a human subject’s protocol approved 
by the Children’s Hospital of Philadelphia (CHOP). In addi-
tion, healthy control subjects were enrolled in the same pro-
tocol and provided signed, informed consent.

Blood Samples

Paired blood and serum samples were collected prior to 
intravenous immunoglobulins (IVIG) treatment, during 
active symptom presentation, and again within 48 h after 
treatment had been initiated, coinciding with abatement of 
symptoms. Peripheral blood mononuclear cells (PBMCs) 
were isolated by density centrifugation, in parallel with an 
age-/sex-matched control PBMC donor. Serum lipopolysac-
charide (LPS) was measured using Pierce™ Chromogenic 
Endotoxin Quantification Kit (Thermo).

Flow Cytometry

Circulating lymphocytes were isolated from peripheral 
blood and stimulated as previously described [20]. In brief, 
for assessment of T cell phenotypes, cells were stimulated 
(with PMA (20 ng/mL), ionomycin (1 µg/mL) and brefeldin 
(5 µg/mL) for 4 h prior to staining. Cells were stained with 
the Zombie Violet Fixable Viability Kit (Biolegend) and 
with antibodies for surface markers. Cells were fixed with 
4% paraformaldehyde or eBioscience Intracellular Fixation 
and Permeabilization Buffer Set (Thermofisher) and stored 
at 4oC prior to analysis on LSRFortessa (BD Biosciences). 
Data was analyzed using FlowJo version 10 (BD Biosci-
ences) as previously shown [21].

Induced BBB-like (iBBB) Model

Human iBBB cultures were derived from human induced 
pluripotent stem cell (iPSC) lines originating from one 
22qDS patient and one age/sex matched healthy control. 
The human iPSC lines were generously provided by Dr. 
Sergiu P. Pașca, Stanford University, Stanford, CA. Human 
iPSCs were differentiated into iBBBs, stored, and cultured 
following established protocols [11, 22].

Transendothelial Electrical Resistance (TEER)

TEER was measured as previously published [23]. In brief, 
arrays were coated with a collagen/fibronectin mixture 
and iBBBs were cultured in human endothelial serum-free 
media (Thermo) containing B-27 Supplement without anti-
oxidants (Thermo) as reported [11, 22]. Cells were treated 
with 25% serum for 72 h during continuous TEER monitor-
ing at 250 Hz.

Results

Here, we report an 8-year-old male patient with a history of 
a de novo heterozygous 22q11.2 deletion (Diagnosis made 
by microarray analysis on day of life (DOL) #5. Break-
points: chromosome 22: 18,916,842 − 21,798,907. Patient 
had a ventricular septal defect repaired at 6 months of age) 
and infliximab-responsive Crohn’s Disease, who presented 
with acute onset of diffuse anasarca, respiratory failure 
and sub-comatose obtundation (Glascow Coma Score = 7) 
after several weeks of worsening colitis symptoms. After 
several weeks of no clinical improvement, the patient was 
diagnosed with SCLS, a condition characterized by leak-
age of plasma from the vasculature causing hemoconcen-
tration, hypoalbuminemia and edema but rarely profound 
mental status changes. Despite daily fevers, infectious 
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and malignant SCLS triggers were not identified. Patient 
did not exhibit abnormal cytokine levels. The patient was 
treated with a high dose (2 g/kg) of IVIG to address SCLS 
symptoms followed by aggressive diuresis. Within days 
the patient’s mental status returned to baseline, he no lon-
ger required respiratory support and his edema resolved. In 
the three years since hospital discharge, the patient received 
prophylactic IVIG at lower doses (500 mg/kg each month) 
and SCLS has not recurred.

Despite negative blood cultures that ruled out bactere-
mia, we found substantially elevated serum LPS (2.788 EU/
mL) compared to two healthy controls (0.664 and 0.683 
EU/ml). The increased in LPS in the 22qDS SLCS patient 
normalized following treatment (0.748 EU/mL), suggesting 
colitis-associated endotoxemia as a potential contributor to 

the condition. As cellular immunity has been linked with 
SCLS [24], we assessed the status of circulating immune 
cells. We found increased PBMCs relative to a control and 
observed increased percentage of monocytes and T lym-
phocytes (Fig. 1A-B). Upon IVIG treatment, there was a 
reduction in the expression of inflammatory markers on leu-
kocytes (Fig. 1C). Due to the patient’s history of Crohn’s 
Disease and our findings of endotoxemia, we studied γδ 
T cells, a subset associated with gut barrier function [25]. 
γδ T cell frequencies were increased in the patient prior to 
IVIG administration and expanded further after treatment 
(Fig. 1D). Together, these findings suggest that increased 
translocation of gram-negative bacterial components dur-
ing a Crohn’s Disease exacerbation contributed to SCLS 
pathophysiology.

Fig. 1 Expansion and activation of peripheral leukocyte populations 
in a 22qDS patient with SCLS. Flow cytometry plot indicating expan-
sion of circulatory (A) CD11b+ monocytes and (B) CD3+ T cells in 
the patient prior to IVIG treatment relative to a matched control. (C) 
Histogram comparing markers in blood monocytes and blood T cells 

prior to and following IVIG treatment. (D) Flow plots demonstrating 
increased γδ T cells in the 22qDS patient with SCLS compared to a 
matched control pre-treatment (left), and further expansion of this 
population post-treatment. Values in A, B and D indicate percentage 
and in C mean fluorescence intensity
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SCLS on the vasculature. To address the potential role of 
22qDS BBB dysfunction on the patient’s severe, but revers-
ible, neurologic impairment, we cultured induced-BBB-like 

We studied circulating endothelial cells and found an 
increase in number and inflammatory phenotype relative 
to a control (Fig. 2A), reinforcing the detrimental effect of 

Fig. 2 Endothelial activation and BBB susceptibility associate with 
neurological symptoms. Flow cytometry plots of (A) circulating endo-
thelial cells (CD31+ MCAM+CD45neg)  (left), expressing ICAM-1 
(CD54), VCAM-1 (CD106), thrombomodulin (CD141) and EPCR 
(CD201) in the 22qDS SCLS patient (top) compared to the matched 
control (bottom). Values indicate percentage. (B) Human induced plu-
ripotent stem cells (iPSCs) were differentiated into induced-BBB-like 
(iBBB) endothelial cells as previously described. ECM = endothelial 
cell media; bFGF = basic fibroblast growth factor, and RA = retinoic 

acid. Differentiated cells were grown in ECM + bFGF + RA for 1 day 
followed by 3 days of culture in ECM for transendothelial electrical 
resistance (TEER) analysis. Cartoon created with BioRender.com. (C) 
TEER of iPSC-derived iBBB cells from a 22qDS patient, treated with 
patient pre-treatment serum compared to control serum. (D) TEER of 
iPSC-derived BBB cells from a healthy control, treated with patient 
pre-treatment serum compared to control serum. ** p < 0.01 by two-
way ANOVA
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inflammatory trigger could have contributed to the onset of 
SCLS. From a pathophysiological standpoint, the genetic 
susceptibility of the BBB due to the 22q11.2 deletion may 
have contributed to neurological manifestations in SCLS.
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